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Using the method of joined asymptotic expansions and the two-layer scheme of incompressible-fluid flow in a
turbulent two-dimensional boundary layer, we have derived relations for calculating the coefficient of turbu-
lent friction and the distribution of the Reynolds stress over the cross sections of the layer in the first asymp-
totic approximation. It is shown that in the zone of a defect on bodies having a relatively large
disturbance-surface curvature the velocities should be separated into vortex velocities, which are due to the
coherent structures, and potential velocities, caused by the transverse pressure gradient. From the available
experimental data on the structure of the flow we inferred that the redundant-velocity profile obtained in the
limiting asymptotic approximation, which, in this case, as in the case of self-similar (equilibrium) regime of
flow, is locally dependent on only the Clauser parameter, is universal.

Introduction. The calculation of a flow in a turbulent boundary layer based on the Reynolds equations is usu-
ally performed with the use of relations analogous to the laminar-boundary-layer equations. The only difference be-
tween them is the replacement of the molecular viscosity and the Prandtl number by the corresponding parameters
accounting for the turbulence effect.

However, as experimental investigations of the structure of near-wall turbulent flows have shown, such "diffu-
sion" approaches to the closure of boundary-layer equations are essentially incorrect. Mass, momentum, and heat trans-
fers across a turbulent boundary layer are for the most part due to the coherent "pin-like" vortex structures [1, 2]. To
put it otherwise, the mechanism of heat and mass transfer is similar to the mechanism of convective transfer.

The asymptotic approach suggests that, when the coefficient of surface friction approaches zero, the distur-
bances in the main external part of a layer are small [3]; therefore, the transverse pressure difference cannot be ig-
nored in the general case. In the case of convective momentum transfer, in the limiting asymptotic approximation the
redundant-velocity profile should depend on only the place (local) characteristics of the flow and the conditions on the
walls.

The present work is devoted to substantiation of the above-mentioned features of an incompressible fluid flow
in a turbulent boundary layer and investigation of the possibility of their use.

Estimation of the Order of Magnitude of the Parameters of a Turbulent Two-Dimensional Boundary
Layer. Let us assume that all the linear dimensions are related to the characteristics longitudinal dimension of the
body. In accordance with the two-layer scheme of flow used in the present work, we introduce the characteristic thick-
ness of the boundary layer δ and the characteristic transverse dimension of the near-wall zone of the flow h. The so-
lution is sought in the asymptotic form: δ → 0 at a small parameter ε → 0 and a constant pressure distribution. The
parameter ε is determined as

ε = √ τw

ρu0
2  = √ cf

2
 . (1)

It is shown in [3] that, for a plane-parallel flow in a channel with a transverse dimension R, the velocity-de-
fect law is true in the external zone of the flow of the order of O(R) at a friction coefficient approaching zero. To put
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it otherwise, the velocity is written as a binomial asymptotic expansion where the first term is of the order of u0 =
u0(x) and the second term has a relative order ε.

A flow in a turbulent boundary layer with δ → 0 approaches to a layered flow; in this case, the velocity-de-
fect law should be true in the first approximation. Therefore, the ratio h ⁄ δ will be assumed, as in [3], to be exponen-
tially small in comparison with ε:

h ⁄ δ = O [exp (− 1 ⁄ ε)] . (2)

Then the contribution of the near-wall layer to the displacement thickness δ∗  and the momentum thickness of the
boundary layer θ can be neglected with an exponentially small error in calculating these parameters.

Contrary to the case of flow in a channel, the transverse dimension of the boundary layer δ is not known in
advance and represents a fairly conditional quantity. Let us relate the quantity δ to the displacement thickness and,
using the estimation following from the velocity-defect law 1 − u ⁄ u0 = O(ε), obtain, as in [4]:

δ∗  = δ ∫ 
0

∞

(1 − u ⁄ u0) d 


y
δ



 = O (εδ) ,   δ = O 




δ∗

ε




 . (3)

The order of magnitude of the quantity δ will be determined using the integral equation momentum conserva-
tion

dθ
dx

 = O 



dδ∗

dx




 = O (cf) = O (ε2) . (4)

It hence follows that

δ = O 




δ∗

ε




 = O (ε) ,   

δ∗

ε2
 = γ = O (1) . (5)

The estimations obtained will be used in determining the asymptotic error of the turbulent-boundary-layer
equations and deriving the corresponding relations.

Asymptotic Error of the Turbulent-Boundary-Layer Equations. Relations for the Velocity-Defect Region.
According to the data of [3], an asymptotic solution of the problem on a layered flow in a channel has an exponen-
tially small error corresponding to estimation (2). A solution in the near-wall zone of a turbulent layer, where the flow
approaches to a layered flow with the above-indicated accuracy, should have an equally small error. The flow in the
external zone of the turbulent layer differs from the layered flow much more substantially. Let us write the Reynolds
equation for this zone of the flow, taking into account the fact that the viscosity effect can be ignored. In the curvi-
linear, orthogonal coordinate system related to the surface of the body, from the nonstationary Euler equations [5] we
obtain

u 
∂u

∂x
 + v 

∂qu

∂y
 = − 

∂
∂x

 




p

ρ



 + 




∂τxx

∂x
 + 
∂qτxy

∂y
 + 
τxy

r




 
1

ρ
 ,

u 
∂v

∂x
 + v 

∂qv

∂y
 − 

u
2
 + v

2

r
 = − q 

∂
∂y

 




p

ρ



 + 




∂qτyy

∂y
 + 
∂τxy

∂x
 − 
τxx
r




 
1

ρ
 ,

∂u

∂x
 + 
∂qv

∂y
 = 0 .

(6)

Here, q = 1 + y ⁄ r; r(x) is the local radius of the body-surface curvature (r > 0 for a convex surface).
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Let us estimate the order of magnitude of the terms in (6), using (5) and the velocity-defect law: x = O(1),
y = O(δ), u ⁄ u0 = 1 + O(ε), q = 1 + O(ε ⁄ r) (r = O(1) in the general case). From the continuity equations follows
v ⁄ u0 = O(ε). According to the experimental data and the condition τw = O(τxy) = ρu0

2O(ε2), (τxx, τxy, τyy/ρu0
2 = O(ε2).

Based on the estimations obtained, we drop the term of the relative order of O(ε2) in (6), assuming that the
pressure on the surface of the body pw(x) is preassigned:

u 
∂u

∂x
 + v 

∂qu

∂y
 = − 

∂
∂x

 




p

ρ



 + 

1

ρ
 
∂τxy

∂y
 ,

u
2

r
 = 

∂
∂y

 




p

ρ



   or   

p

ρ
 = 

pw (x)
ρ

 + 
1

r
 ∫ 
0

y

u
2
dy ,

∂u

∂x
 + 
∂qv

∂y
 = 0 .

(7)

The traditional equations of a turbulent boundary layer follow from (7) on condition that q = 1 and p ⁄ ρ =
pw

 ⁄ ρ. This (at the same error O(ε2)) calls for the condition r ≥ O(1 ⁄ ε), which corresponds bodies with a thickness of
the same order or smaller than the thickness of the boundary layer. Only for such bodies can the velocity defect of
the relative order of ε be calculated using classical equations. In the case where r = O(1), it is necessary to take into
account the pressure difference along the normal to the boundary layer (as already noted in [6]). It should be noted
that, in both cases, the relative error in determining the velocity is equal to O(ε2). Thus, it is incorrect to seek the next
asymptotic approximation, i.e., to deduct the velocity expansion terms of the order of O(ε2) in the case where classical
turbulent-boundary-layer equations are used (i.e., in the case where the stresses (τxx, τyy = O(ε2) ρu0

2) are ignored).
Hence it follows that the asymptotic solution (7) can be sought by linearization on the assumption that the

disturbances caused by the transverse pressure gradient are independent of the other disturbances. Taking into account
the aforesaid, we write

u = u0 (x) [1 + εF (x, η) + εf (x, η) + ε2
E (x, η) + O (ε3)] ,   v = u0 (x) [εϕ (x, η) + O (ε2)] . (8)

Here, η = y ⁄ ε = O(1); εF is the relative potential velocity disturbance caused by ∂p ⁄ ∂y, and εf is the vortex distur-
bance. In the main approximation, substitution of (8) into (7) gives the Bernoulli equation: u0

2 ⁄ 2 + pw
 ⁄ ρ = const.

The pressure distribution is described as

p

ρ
 = 

pw

ρ
 + εη 

u0
2

r
 + O (u0

2ε3) . (9)

From the continuity equation follows

ϕ = − η 
d ln u0

dx
 . (10)

For a potential flow about a body (the Bernoulli constant does not change across the streamlines), from (9)
and the Bernoulli equation follows

F = − 
η
r

 . (11)

In the linear approximation considered, the vortex disturbances f depend on only u0(x) and τxy. For them,
from the first equation of (7) and Eq. (10) we obtain

∂f

∂x
 + 

d ln u0

dx
 



2f − η 

∂f

∂η



 + f 

d ln ε
dx

 = 
∂T

∂η
 , (12)
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where T = τxy/(ρu0
2ε2) = O(1).

Asymptotic Joining of Solutions in the External and Internal Zones of a Flow. Joining of solutions will
be performed, using the data of [3], at any degree of the surface roughness. It should be noted that, according to (2)
and (11), in the region of joining the contribution of the potential disturbances to the solution is exponentially small.
Therefore, only the function f, for which it is necessary to find the boundary conditions at η → 0, should take part in
the indicated procedure.

The solution in the near-wall zone of the flow, determined by the conditions on the surface and by the shear
stresses invariable along the normal to the body, should be practically identical to the solution for the flow in the
channel, the only difference being the parametric dependence on x. Because of this, all the data of [3] concerning the
joining of solutions can be used in the case of a turbulent boundary layer if the characteristic transverse dimension of
the channel R is replaced by the thickness of the layer δ∗  ⁄ ε and the ratio of the dynamic velocity to the characteristic
velocity u0 (√λ ⁄ 8 in [3]) is replaced by ε. As a result of this replacement, we obtain the following boundary condi-
tion for Eq. (12):

f → A ln (ay ⁄ R) = A ln (aη ⁄ γ)   at   η → 0 . (13)

The relation for determining the small parameter ε can be written in a similar manner:

1
ε

 = A ln 
δ∗

aεh
 = A ln 

γε
ah

 . (14)

The result obtained corresponds to the conclusions made in [7], where it has been shown that the solutions in the in-
ternal and external regions of the flow can be directly joined without the introduction of a third intermediate zone.

The parameters γ, a, and h in (13) and (14) are dependent on x in the general case. Let us assume that these
dependences are fairly smooth or d ln γ/dx, d ln a/dx, and d ln h/dx = O(1). Then, from (14) follows

d ln ε
dx

 = O (ε) . (15)

Thus, the corresponding term in (12) can be ignored, which does not introduce an additional asymptotic error
into the solution. Using (8), we introduce the displacement thickness by the formula

δ∗  = ∫ 
0

∞



1 − 

u
u0

 + εF

 dy = − ε2

 ∫ 
0

∞

fdη (1 + O (ε)) . (16)

In the case where δ∗  is determined in this manner, only the displacement action of the vortex disturbances is
taken into account, since δ∗  B 0 in their absence (in the absence of a boundary layer). Since f = 0 outside the layer,
the integral of f should converge.

Let us integrate (12) over η from 0 to ∞. Taking into account (15) and the conditions T(0) = 1 and T(∞) =
0, we obtain

dγ

dx
 + 3γ 

d ln u0

dx
 = 1 ,   γ = 

δ∗

ε2 = O (1) . (17)

Expression (17) is an integral momentum-conservation equation, in which the terms with a relative order
O(ε) are dropped and the velocity u0 is not the velocity at the outer boundary of the layer in the general case. In this
case, the second term in (17) involves the known Clauser parameter β:

β = − γ 
d ln u0

dx
 . (18)

The linear equation (17) has a solution
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γ = 






C + ∫ 

x1

x

u0
3
dx






 u0
−3

 . (19)

The constant C = γ1
 ⁄ u01

2 , where γ1 = γ and u01 = u0 at x = x1 corresponding to the "beginning" of the tur-
bulent boundary layer, can be formally taken as zero at x1 = 0 on the assumption that the initial conditions have a
small effect on the turbulent layer at large values of x.

Let us drop the term with d ln ε/dx and pass to the variable ζ = η ⁄ γ in Eq. (12) or, put otherwise, to the
variable y normalized to the thickness of the boundary layer δ∗  ⁄ ε.

Then, using (17) and (18), we obtain

γ ∂f

∂x
 − 2βf − (1 + 2β) ζ 

∂f

∂ζ
 = 
∂T

∂ζ
 ,   ζ = 

η
γ

 . (20)

The boundary conditions are as follows: f → 0, T → 0 when ζ → ∞; f → A ln ζ;, T → 1 when ζ → 0.
The self-similar (or equilibrium, according to the Clauser terminology) solution of this equation independent

of x is possible only at β = const, which is the necessary condition for the existence of this solution. Then, assuming
that C = 0 and x1 = 0 in (19), from (17), at β = const, we obtain γ = const x, d ln u0/dx = const/x, and consequently

u0 = Dx
m

 ,   β = − m (1 + 3m)−1
 ,   γ = (1 + 3β) x . (21)

A self-similar flow about a plate (β = 0) was obtained and investigated in many experimental works. In the
experiments [4] performed on a plane surface, self-similar flows with a positive pressure gradient (m < 0, β > 0) were
also obtained. It should be noted that the velocities of self-similar flows realized at fairly large positive pressure gra-
dients obey not the logarithmic law at y → 0 but the law u C √y  [8], which directly follows from the dimensionality
theory. Unlike the limiting transition ε → 0, β = const used in the present work, this scheme corresponds to the tran-
sition ε2β = const, β → ∞, where the velocity profile approaches to the velocity profile of a separation flow [8].

The self-similar form of (20) (∂f ⁄ ∂x = 0) was obtained in [19] on the assumption that ∂p ⁄ ∂y = 0, i.e., only
the vortex disturbances were essentially considered.

Methods of Solving the Asymptotic Turbulent-Boundary-Layer Equations. As the above-described asymp-
totic analysis has shown, vortex disturbances independent of the transverse pressure gradient can be investigated using
classical boundary-layer equations. Because of this, the data obtained with these equations are true only for vortex dis-
turbances and u0 is considered as the velocity at the "outer boundary of the layer." In this case, the second approxi-
mation considered in [9] is incorrect because it is beyond the scope of the asymptotic errors of the boundary-layer
equations.

It should also be noted that it is needless to use any closure hypothesis in deriving equations of the type of
(20) (as has been done for the particular case where β = 0). However, the use of any closure methods makes it pos-
sible to solve (20), i.e., to find f = f(x, ζ). Clearly, having determined experimentally the profiles f(x, ζ), we can solve
the inverse problem, i.e., to determine T = T(x, ζ). This approach calls for the performance of measurements for each
particular case of flow and so cannot be considered as universal.

We propose some ideas based on the properties of a turbulent boundary layer, which, in the first asymptotic
approximation, make it possible to use, instead of arbitrary closure hypotheses, the universality of the function

f (x, ζ) = f [β (x), ζ] . (22)

They are supported first of all by the known Coles law of the wake in a turbulent boundary layer [11] ob-
tained as a result of processing a large number of experimental data non-self-similar and non-self-similar flows. Ac-
cording to [11], the profiles f are approximated by the one-parameter dependence f = f(Π, ζ). Consequently, relation
(22) will be true if Π = Π(β).

The second argument in favor of our ideas is the unstable structure of the boundary layer. It is shown in [1,
2] that at fairly large Reynolds numbers a boundary layer consists of isolated aggregations (bulges) of pin-like vortex
structures. These structures arise in the near-wall layer and rise to the external part of the layer due to the self-induced
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vertical velocity, where they take a tilting of 45–50o with respect to the surface. The structures, extending and moving
with a velocity of (0.6–0.8)u0, reach the upper boundary of the layer, after which they are disrupted by a relatively
powerful high-velocity liquid flow bursting from the external region of the flow to the surface. The aggregations of
such structures have a transverse dimension of the order of the boundary-layer thickness.

Thus, the momentum exchange between the near-wall and external regions is largely performed in the convec-
tive way along a small longitudinal length of the order of δ. Due to this circumstance the turbulent layer differs sub-
stantially from the laminar layer. In a laminar layer, this momentum transfer is due to the molecular diffusion and
occurs along lengths of the order of the body length, which corresponds to parabolic laminar-boundary layer equations.

The aforesaid allows the conclusion that all the hypotheses of the closure of turbulent-boundary layer equa-
tions, leading to equations of the parabolic type, are in contradiction with the real structure of the layer, even though
they provide an acceptable accuracy for many cases of flows [12, 13].

Let us assume that the characteristic length, along which the velocity profile in a turbulent boundary layer is
formed, is δ∗  ⁄ ε = O(δ). Then in this layer the flow can be considered, with a relative error O(ε), as layered and a
velocity-defect law similar to that in tubes and channels [3] should be true in the accepted approximation. A distinc-
tion is that this law is local, i.e., it depends on the local conditions at the outer boundary of the layer.

These conditions should account for the external-turbulence effect and the variability of the velocity u0 in the
general case. Let us assume that the first factor is absent and consider the case of small external turbulence. We will
also assume that the variability of u0 can be characterized by the derivatives of u0 with respect to x, expressed in di-
mensionless form with the use of the characteristic length δ∗  ⁄ ε and the dynamic velocity εu0. Then, for the derivative
of the nth order we will have

βn = − 







δ∗

ε








n

 
1

εu0

 
d

n
u0

dx
n

 .

Let us exclude the critical points of the flow where u0 = 0 and regions having features in the pressure distri-
bution (separation region, corner points). Then, assuming that (dnu0

 ⁄ dxn)/u0 = O(1) and γ = δ∗  ⁄ ε2 = O(1), we obtain

β1 = β = − γ 
d ln u0

dx
 ,   βn = O (εn−1) .

Ignoring the influence of the parameters βn, which are asymptotically small at n > 1, we arrive at the conclu-
sion that, in the general case, the local profiles of the redundant velocity should depend on only the local value of the
Clauser parameter.

To put it otherwise, the function (22) f should be locally self-similar at ε → 0.
It should be noted that the locally self-similar velocity profiles were used earlier in the calculation of a lami-

nar boundary layer [14]. However, in this case, the asymptotic error is equal to O(1). For a turbulent boundary layer,
the local self-similarity is true to within the error O(ε).

Using (22), we write out relations of the first approximation necessary for calculation of the turbulent bound-
ary layer (formulas (14), (18)–(20)):

γ 
∂f

∂β
 
dβ
dx

 − 2βf − (1 + 2β) ζ 
∂f

∂ζ
 = 
∂T

∂ζ
 ,   f = f (β, ζ) ; (23)

f → 0 ,   T → 0   at   ζ → ∞ ;   f → A ln aζ ,   T → 1   at   ζ → 0 ;

a = a (β) ,   β = − γ 
d ln u0

dx
 ,   γ = 


C + ∫ u0

3
dx

 u0
−3

 ,   
1

ε
 = A ln 

γε
ah

 .
(24)

To these relations we add a formula from [3] for calculating the characteristic dimension of the near;wall zone
h:
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h = 0.0331ke [exp (− 12α ⁄ ke
+) + 3.17 ⁄ ke

+
] . (25)

The empirical function ω(α) (ω(0) = 0, ω(1) = 1) involved in the formula from [3] is replaced by ω(α) =
α in (25).

A comparison with the experimental data shows that relation (25) can be used at least in the cases where α
= 1 (sand roughness) and α = 0 (technical roughness). Moreover, it is also true for two limiting cases where ke

+ → 0
(smooth wall) and ke

+ → ∞ (absolute roughness):

h = 0.105ν ⁄ εu0   (ke
+
 = 0) ,     h = 0.0331ke   (ke

+
 = ∞) . (26)

Relations (23) are universal in that they are independent of the gas viscosity and the roughness characteristics.
With the experimentally determined f = f(β, ζ) (and, consequently, a = a(β)), one can obtain, using (23), the

distribution of the dimensionless Reynolds pressure T = τxy
 ⁄ τw across the boundary layer (it follows from (23) that,

unlike f, the T profiles will be locally similar only at dβ ⁄ dx = 0, i.e., only for self-similar flows). In the asymptotic
limit ε → 0, this solution should give a more reliable result, since it is not related to the fairly arbitrary closure hy-
potheses.

In the case where only the friction coefficient cf = 2ε2 is calculated, the problem is even more simplified,
since, to do this, it is necessary to have only the experimentally determined function a = a(β) and the initial value of
γ1 (or δ1

∗  = γ1ε1
2) at x = x1 and u0 = u01. Then, ε is calculated using (24) and (25) with a relative asymptotic error

O(ε2) = O(cf).
We now consider some particular examples of the solution of (24). Using the first relation of (26) for the

case of a smooth wall, we obtain

1

ε
 = A ln 

Re∗
0.105a (β)

 ,   Re∗  = 
u0δ

∗

ν
 ,   A = 2.44 . (27)

For self-similar flows, according to (21), γ D x and there exists an analytical dependence of ε on Rex:

1

ε
 = 2.44 ln 

(1 + 3β) Rexε
2

0.105a (β)
 ,   Rex = 

u0x

ν
 . (28)

In the case of flow about a plate [10] (u0 = const), β = 0, α(0) = 1.27, and consequently

1
ε

 = 2.44 ln (7.5 Rexε
2) . (29)

An analogous formula obtained in [10] can be written in the form

1
ε

 = 2.44 ln (6.1 Rexε
2) .

A comparison of the results of calculation by this formula with the experimental data obtained in [10] shows
that at Rex = 106–107 the calculation gives a slightly overstated (by approximately 1–1.5%) value of ε. Therefore, for-
mula (29), giving a smaller (by approximately 2%) value of ε should also fairly exactly describe the experimental re-
sults.

It is assumed that C = 0 and x1 = 0 in relations (28) and (29), i.e., the whole flow about the body is turbu-
lent. Clearly, in the region where the regime of flow is laminar, these relations cannot be used. One would expect a
relatively small accuracy of (29) at Rex ≈ 106 too, i.e., in the region adjacent to the transition zone, since, in this zone,
γ should be calculated, strictly speaking, using (19) at C ≠ 0. Therefore, in the case of flow about an arbitrary body,
the assumption that C = 0 and x1 = 0 can lead to a larger error as compared to the case of flow about a plate.

We agree with the authors of [10], who argue that only the first asymptotic approximation (considered in the
present work) is true within the framework of the boundary-layer approximation. In this approximation the values of
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δ∗  = θ = O(εδ) and differ by the extra-order terms O(ε2δ). However, the conclusion that the form parameter H =
δ∗  ⁄ θ cannot be calculated in the first approximation to the terms of the order of O(ε) (i.e., H B 1) [10] is wrong.

Using (8), we write, analogously to (16),

θ = ∫ 
0

δ




u
u0

 − εF

 

1 − 

u
u0

 + εF

 dy , (30)

then, taking into account (8), we obtain

δ∗  = − ε [b (x) + εc (x) + O (ε2)] ,   θ = − ε [b (x) + εc (x) + ε ∫ 
0

δ

f
 2

dy + O (ε2δ)] , (31)

b (x) = ∫ 
0

δ

fdy ,   c (x) = ∫ 
0

δ

Edy .

Hence, for the form parameter H = δ∗  ⁄ θ we have

H = [1 − εI2
 ⁄ I1]

−1
 + O (ε2) ,   I1 = − ∫ 

0

∞

fdζ = 1 ,   I2 = ∫ 
0

∞

f
2
dζ . (32)

The experiments of F. R. Kham, the results of which are presented in [15], have shown that the data of cal-
culation by (32) agree well with the experimental data for smooth and rough plates at ε = 0.035–0.1 if I2

 ⁄ I1 C 6.3.
Possibility of Application of the Results Obtained to Real Regimes of Flow in a Turbulent Boundary

Layer. The results obtained in the present work allow the following main conclusions: the disturbances of the velocity
in a turbulent boundary layer should be separated into vortex and potential disturbances and the velocity profiles (22)
are locally self-similar. The first of these conclusions is indirectly supported by the results obtained in [11], where the
author explains the failure in the calculation of the Reynolds stresses by the influence of ∂p ⁄ ∂y. An asymptotic analy-
sis performed in [6] has also shown theoretically that it is necessary to take into account the transverse pressure gra-
dient. However, it is necessary to perform direct experiments in which the vortex and potential disturbances will be
separated. To prove the rightfulness of this division, Yu. A. Lashkov, V. M. Litvinov, N. V. Samoilova, and A. A.
Uspenskii have measured the velocity profiles on the plane surface of the working part of a wind tunnel in the pre-
separation zone of the flow downstream of the obstacle. It should be noted that these measurements were made, in the
strict sense, not in the region of the boundary layer where the longitudinal pressure gradient is specified by the solu-
tion of the Euler equations ("inviscid" flow) and the differential head normal to the body is determined by the surface
curvature (relation (9)). In the preseparation zone, the transverse pressure gradient arises because of the significant
(variable in y) curvature of the streamlines, and the potential component of the velocity disturbances is not described
by relation (11).

However, the vortex component of the velocity can be separated in this regime too. To do this, it is necessary
to perform measurements without regard for the differential head across the boundary layer, assuming that the mutual
influence of the vortex and potential disturbances can be ignored (the linear approximation is true). This corresponds
to the "standard" method of determining the average velocity by the difference between the total pressure measured
using a corresponding head and the static pressure on the surface of the body. The true average velocity can be sought
with the use of a thermoanemometric sensor or (as in the indicated experiments) by measuring the static pressure not
on the surface of the body but at the value of y at which the total pressure was measured. The results of the corre-
sponding measurements are shown in Fig. 1 (curves 1 and 2). Here, curve 3, obtained by subtraction of the potential
disturbances ∆u0 from the total velocity, is presented for estimation of the error of the linear approximation (i.e., the
independence of the vortex and potential disturbances). The potential disturbances have been calculated by linearization
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of the Bernoulli equation near the value of u0 by the difference between the static pressures measured at y = 0 and at
the current value of y.

The results presented in Fig. 1 point to the fact that the upper boundary of a boundary layer cannot be deter-
mined without separation of the vortex disturbances in the flows having a large curvature of their lines. It also follows
from this figure that, in the general case, the velocity u0 cannot be identified with the velocity at the outer boundary
of the layer. Moreover, the coincidence of curves 2 and 3 in the region of the boundary layer testifies to the fact that
the vortex and potential disturbances are fairly small and therefore develop practically independently.

The above conclusion that the profiles of the vortex component of the velocity-defect profile are locally self-
similar (in the main asymptotic approximation) should be verified more extensively in experiments for the cases of real
regimes of flow. For example, numerous experimental data obtained at Re ≈ 106–107 in [16] show that a fairly large
"relaxation length" (approaching zero at ε → 0) is required in order that a quasiequilibrium regime of flow can be es-
tablished (Π = Π(β)). "Relaxation" equations have been proposed in [1] for taking into account the "delay" in estab-
lishment of equilibrium. However, they cannot be considered as sufficiently valid, in particular because of the fact that
the "relaxation length" was taken to be proportional to δ∗  and not to the thickness of the boundary layer. Nonetheless,
an acceptable relaxation equation can be derived by processing a large number of experimental data.

This approach makes it possible to obtain a method for calculating a turbulent boundary layer without re-
course to fairly arbitrary models of turbulent viscosity.

Conclusions. The asymptotic analysis performed by us has shown that a flow in a turbulent boundary layer
differs substantially from an analogous flow in a laminar boundary layer. It has been established that models of turbu-
lent viscosity, leading to parabolic equations similar to the laminar-layer equations, are in contradiction with the main
(convective) mechanism of momentum transfer caused by the coherent vortex structures.

The second feature of a flow in a turbulent layer is that the influence of the transverse pressure gradient
should be taken into account in the cases of a large curvature of the streamlines. Because of this, in measurements of
the boundary-layer parameters the potential disturbance caused by the transverse pressure gradient should be excluded
from the total velocity.

Unlike the case of a laminar boundary layer where real regimes of flow are described very well in the asymp-
totic approximation, in the case of a turbulent layer an analogous approximation gives a quantitatively acceptable so-
lution only for unreally large values of Re = O(1012) because of the logarithmic dependence of the small parameter
ε on Re. However, many asymptotic properties of the turbulent boundary layer are retained up to Re = O(106).

Fig. 1. Profiles of the tangential velocity in the preseparation region of the
boundary layer: 1) total velocity, 2) velocity from which the potential compo-
nent is excluded in the process of measurements, 3) velocity from which the
potential component calculated in the linear approximation is excluded. y, mm;
u, m/sec.
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These properties make it possible to develop calculation methods that do not involve the use of turbulent-vis-
cosity models.

NOTATION

A, constant inverse to the universal von Ka′ rma′n constant; a, parameter determining the form of the logarith-
mic variety of the function f (13); b, c, coefficients of the asymptotic expansion of δ∗  (31); C, constant specifying the
initial value of the function γ (19); cf, local friction coefficient (1); D, constant (21); E, F, f, functions in the corre-
sponding terms of the asymptotic expansion of u ⁄ u0 (8); H = δ∗  ⁄ θ, form parameter (32); h, characteristic transverse
dimension of the near-wall zone of the flow (25); I1, I2, values of intervals (32); ke, effective hydraulic roughness;
ke
+, ke related to the "viscous length ν/(εu0)"; m, constant (21); u = 1, 2, 4, ..., integer; p, pressure; pw, pressure on

the surface of the body; r, local radius of the surface curvature; R, characteristic transverse dimension of the channel;
Re, Reynolds number; Rex = u0δ ⁄ ν (27); Re∗  = u0x ⁄ ν (28); T, dimensionless shear stress (12); u0, velocity calculated
using the Bernoulli equation at p = pw; u and v, velocity components along the surface of the body and on the normal
to it; x and y, coordinates along the surface of the body and on the normal to it; α, ratio of ke to the average geo-
metric roughness; β, Clauser parameter (18); γ = δ∗  ⁄ ε2 (5); δ, transverse dimension of the boundary layer; δ∗ , dis-
placement thickness of the boundary layer (16); ε = (cf

 ⁄ 2)1
 ⁄ 2 (1); η = y/ε (8); θ, momentum thickness of the

boundary layer (30); λ, friction coefficient of the channel [3]; ν, kinematic viscosity; Π, Coles parameter of the wake
in the turbulent boundary layer [11]; ρ, density; τxx, τxy, τyy, components of the Reynolds stress tensor; τw, shear
stress of the surface of the body; ϕ, function of the first term in the asymptotic expansion of v ⁄ u0 (8); ω (α), empiri-
cal function [3]. Subscripts: e, effective; f, friction; 0, boundary layer is absent; w, wall.
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